Võta ühendust:
+372 618 1727
info@koolitus.ee

Python, R-keel, Data Science, Big Data

 

Masinõppe algoritmid otsivad andmetes infot ja mustreid, et tekitada kasutajale parem infoväli. Näiteks masinõppe algoritmidega saab luua hea ja isikupärase veebikeskkonna ning muuta ettevõtte tegevust efektiivsemaks ja kasumlikumaks.   

 

/  Masinõpe on andmeanalüüsi meetod, mis automatiseerib analüütilise mudeli koostamist.

See on tehisintellekti haru, mis põhineb ideel, et süsteemid saavad andmetest õppida, mustreid tuvastada ja otsuseid langetada minimaalse inimese sekkumisega.  /

 

Lihtsalt öeldes kasutatakse masinõppe algoritme, et leida mustreid suurtest andmemahtudest. Andmed hõlmavad kõiki numbreid, sõnu, pilte, klikke – ükskõik, mis andmed digitaalselt on, kõiki saab sööta masinõppe algoritmidele.

Praegune masinõpe sündis mustrituvastusest ja teooriast, mille kohaselt peaksid arvutid õppima konkreetseid ülesandeid täitma ilma programmeerimiseta.

Masinõppe on protsess, mida paljud teenuse platvormid kasutavad (näiteks Youtube, Netflix, Google, Facebook, Twitter jne). Iga platvorm kogub võimalikult palju andmeid inimeste kohta (näiteks mis stiili muusikat kuulad, mis žanri filme vaatad, millised postitused sulle meeldivad) ning masinõppe algoritmid panevad need klikid kokku ning teevad väga täpseid ennustusi, mida sa võiks järgmisena kuulata, vaadata või lugeda. Näiteks, kui vaatasid YouTube-st Jamie Oliveri videot risotto tegemisest, siis edaspidi suurendatakse erinevate kokakunsti videote hulka sinu YouTube kontol.

 

Kuigi näidetena on toodud maailma suurfirmad, kes masinõpet kasutavad, vaid masinõpet on võimalik rakendada igas ettevõttes, väikestest suurteni. Vaja on vaid andmebaase, mille kallal masinõpe toimetama panna.  

 

Miks on masinõpe oluline?

Andmete kaevandamine (Data Mining) ja analüüsimine on muutunud populaaremaks kui kunagi varem. Andmete maht on kasvanud väga suureks, arvutustööstus on võimsam ja andmete salvestus on osavam kui kunagi varem. Kõik see tähendab, et on võimalik kiiresti ja automaatselt toota mudeleid, mis suudavad analüüsida suuremaid ja keerukamaid andmeid ja pakkuda kiiremaid ning täpsemaid tulemusi – isegi väga suures mahus.
Täpsete mudelite loomisega on organisatsioonil parem võimalus tuvastada kasumlikud võimalused või vältida tundmatuid riske.

 

Kes kasutavad masinõpet?

Masinõpet võiks kasutada kõik, kes töötavad suurte andmemahtudega, peavad neid analüüsima ja soovivad vähendada kulusid, riske ja tõsta tulemuslikkust. Mõned näited valdkondadest:

  •  Valitsusasutused

Valitsusasutustel või omavalitsustel, on eriline vajadus masinõppe järele, kuna neil on mitmeid erinevaid andmeallikaid, mida saaks ülevaate saamiseks analüüsida. Näiteks andurite, mis on liikluses, jalakäijate tunnelites jne, andmete analüüsimisel selgitatakse välja võimalused efektiivsuse suurendamiseks ja raha säästmiseks.

 

  • Tervishoid

Kaasaskantavate seadmete ja andurite kasutamine võimaldab saada reaalajas andmeid patsiendi tervise hindamiseks. Masinõppe võib aidata meditsiiniekspertidel analüüsida andmeid, et tuvastada suundumusi või mustreid, kuidas haigus/paranemine kulgeb vms.

 

  • Jaemüük

Suuremad e-kauplused teevad soovitusi, mis sulle võiks meeldida. Need soovitused tulevad esemetest mida varem oled ostnud või vaadanud – ka nemad kasutavad masinõpet. Selleks, et ostuajalugu analüüsida, ostukogemust isikupärasemaks muuta või pakkumisi kavandada, on vaja masinõpet.  

 

  •  Transport

Andmete analüüsimine mustrite ja suundumuste väljaselgitamiseks on transporditööstuse jaoks võtmetähtsusega, kuna see põhineb marsruutide tõhustamisel ja võimalike probleemide ennustamisel kasumlikkuse suurendamiseks. Andmeanalüüs ja masinõppe modelleerimise aspektid on olulised tööriistad kulleritele, logistikutele, ühistranspordile ja teistele transpordiorganisatsioonidele.

 

Mõned laialt levinud masinõppe rakendused:

  • Isesõitev Google auto
  • Soovitused veebiplatvormidel nagu Netflix, YouTube, Amazon
  • Sinule oluliste teemade postitused jõuavad sinu ajajoonele Facebookis, Twitteris ja Instagramis
  • Kõige olulisem valdkond – pettuste tuvastamine.
  • Liikluses valgusfooride sageduse muutmine tiheda liiklusega aegadel.

 

Masinõppes suurima väärtuse saamiseks pead teadma, kuidas siduda parimad algoritmid õigete tööriistade ja protsessidega.

Selle teadmise saamiseks on IT Koolitusel uus kolmepäevane kursus „Fundamentals of Machine Learning“, kus tehakse tutvust masinõppega, R-keele ja Pythoniga ning andmete analüüsimisega. Kursuse lõpus on sul teadmised masinõppe maailmast, praktikatest ning põhimõtetest. Lisaks oskad luua ise kergemaid masinõppe mudeleid.

Tule koolitusele 25. – 27. august 2020 

Rohkem infot: https://pood.aripaev.ee/fundamentals-of-machine-learning

 

Viide algallikale: https://www.sas.com/en_us/insights/analytics/machine-learning.html

 

Sinu IT Koolitus

18.06.2020