Introduction to R

Data visualisation, manipulation and analysis

The world is increasingly data-driven. R is the avant-garde of data science. You learn some of the most modern techniques in data science and will be able to create stunning graphs with ease, develop automatic reports and get insights from your data.

The main purpose of this training is to allow the trainee to be able to independently work with R.

This is a heavily hands-on training featuring topics like:

  •        grammar of graphics,
  •        grammar of data manipulation
  •        Rmarkdown for reports generation.

Target audience:

The course is targeted to people who are ready to move past Excel in their data analysis. The course does not assume any previous knowledge of programming/scripting.

R is used widely in the data science world and this means pretty much every sector by now – be it IT, fintech, medicine or government sector.

The course helps You to:

  • automate data-driven reports;
  • easily understand your data by visualizing it and communicate the results using publication-ready graphs;
  • apply the most modern data analytics/machine learning concepts on your data.

Prerequisites to the course (recommended):

The course does not have any prerequisites.

After completing this course, students will be able to:

  •        create visualisations using grammar of graphic language;
  •        create reports using rmarkdown;
  •        process of data elegantly using grammar of data manipulation (dplyr and friends).

Training Principles:

The course will be in a hands-on format - topics are first introduced by the lecturer, then solved individually.

The training price also includes:

  • hot drinks with cookies;
  • fresh fruits;
  • study materials;
  • a trainer's consultation on the topics learned, by e-mail after the training;
  • a certificate.

Participants who have completed the training will be issued a certificate. The prerequisite for issuing a certificate is full participation in training and achievement of learning outcomes. The acquisition of learning outcomes is assessed during the training through practical assignments.

For participants who have not achieved the learning outcomes, a certificate of attendance will be issued upon request.

Length: 32 academic hours

Continuing Education Curriculum Group: 0613 Software and Application Development and Analysis Curriculum Group

 

The course is led by Indrek Seppo.
 
Trainer introduction: Indrek Seppo is probably the most experienced R trainer in Estonia having given numerous R courses at the universities and adult trainings in Estonia and abroad. His R courses at University of Tartu have been evaluated to be the best courses in the whole faculty by student feedback. Indrek Seppo has been recently helping to build the e-Estonia at e-Residency, his background includes work in both academic settings (University of Tartu), applied research (Estonian Center of Applied Research Centar) and business environment (counter-drone startup Marduk Technologies).
 

Osalejate tagasiside koolitusele:

⭐⭐⭐⭐⭐

"Koolitus oli hästi ettevalmistatud, snäkid, kohvipausid, lõunapausi soe söök. Arvutid töötasid, toas oli soe ja kraanist tuli soe vesi. Koolitaja Indrek Seppo oli 120% väga hea! Mõistlikult oli rakendatud hands - on ja loengulist osa. Ainest sai ülevaate ja edasiõppimise võimalused on teada. Koolituse hinna ja kvaliteedi suhe oli paigas (sest ega see mingi odav koolitus polnud) Jäin väga rahule ja isegi kahju, et kursus lõppes, oleksin ühe korra veel kohale tulnud."

Ajakava

Day 1
Day 2
Day 3
Day 4
09:15 - 09:30
Gathering

The training takes place at Vana-Lõuna 39/1, Tallinn, IT Training premises. You can park in the Europark car park at Veerenni 36, EP63. 

09:30 - 11:00
1. Introduction to R and Rstudio
  • brief overview of R and Rstudio;
  • managing projects in RStudio;
  • the basic of using R.

Methods used: hands-on training

11:00 - 11:15
Coffee break
11:15 - 12:45
2. The basics of using R
  • data structures (vectors and data frames);
  • functions.

Methods used: hands-on training

12:45 - 13:30
Lunch
13:30 - 15:00
3. Initial overview of dataset, data types
  • initial overview of dataset;
  • data types;
  • getting data in and out of R (part 1).

Methods used: hands-on training

15:00 - 15:15
Coffee break
15:15 - 16:45
4. Additional packages in R
  • managing additional packages in R.

Methods used: hands-on training

09:15 - 09:30
Gathering

The training takes place at Vana-Lõuna 39/1, Tallinn, IT Training premises. You can park in the Europark car park at Veerenni 36, EP63.

09:30 - 11:00
1. Recap and Dates with lubridate
  • quick recap of what we learned last time;
  • converting any bad dates to good ones with lubridate.

Methods used: hands-on training

11:00 - 11:15
Coffee break
11:15 - 12:45
2. Getting data in part 2; Filtering data
  • reading data from various formats;
  • interfaces to online databases;
  • filtering data.

Methods used: hands-on training

12:45 - 13:30
Lunch
13:30 - 15:00
3. Visualizing data - Grammar of Graphics
  • introduction to grammar of graphics.

Methods used: hands-on training

15:00 - 15:15
Coffee break
15:15 - 16:45
4. Grammar of graphics
  • geometrics;
  • aesthetics;
  • grouping variables and facets.

Methods used: hands-on training

09:15 - 09:30
Gathering

The training takes place at Vana-Lõuna 39/1, Tallinn, IT Training premises. You can park in the Europark car park at Veerenni 36, EP63. 

09:30 - 11:00
1. Grammar of graphics continues
  • additional geometrics;
  • positions;
  • scales.

Methods used: hands-on training

11:00 - 11:15
Coffee break
11:15 - 12:45
2. Grammar of graphics continues
  • color scales, manual scales;
  • legends;
  • themes.

Methods used: hands-on training

12:45 - 13:30
Lunch
13:30 - 15:00
3. Lists and functions
  • another data structure - list;
  • writing functions in R;
  • factor variables in R.

Methods used: hands-on training

15:00 - 15:15
Coffee break
15:15 - 16:45
4. Introduction to dplyr – grammar of data manipulation
  • piping in R;
  • main verbs in grammar of data manipulation: o filter(), select(), group_by(), summarize(), mutate(), arrange().

Methods used: hands-on training

09:15 - 09:30
Gathering

The training takes place at Vana-Lõuna 39/1, Tallinn, IT Training premises. You can park in the Europark car park at Veerenni 36, EP63. 

09:30 - 11:00
1. Recap and rmarkdown – writing automatic reports in R
  • recap of grammar of graphics;
  • introduction to RMarkdown.

Methods used: hands-on training

11:00 - 11:15
Coffee break
11:15 - 12:45
2. Grammar of data manipulation continues
  • data in long and wide formats;
  • converting between formats (tidyr).

Methods used: hands-on training

12:45 - 13:30
Lunch
13:30 - 15:00
3. Grammar of data manipulation continues
  • additional training on grammar of data manipulation.

Methods used: hands-on training

15:00 - 15:15
Coffee break
15:15 - 16:45
4. Putting it all together and additional materials
  • grammar of graphics;
  • grammar of data manipulation and Rmarkdown;
  • additional materials.

Methods used: hands-on training

Lisainfo

Registreerudes e-poe, e-kirja või telefoni teel, saadame Teile arve ja täpsema info osalemise kohta.
Üksteist päeva enne koolitust saadame Teile e-kirjaga meenutuse osalemise infoga.

Koolitusel osalemine on nimeline, kuid saate osalejat tasuta muuta kuni koolituse alguseni.

Koolituse eest tasumine toimub arvel viidatud arveldusarvele. Arve saadetakse maksja aadressile e-postiga. Arve tuleb tasuda enne koolituse algust arvel märgitud maksetähtajaks.

IT Koolitus on Eesti Töötukassa koolituskaardi koostööpartner. Tutvuge koolituskaardi infoga SIIN.
Täpsema info saamiseks võtke meiega ühendust telefonil 618 1727 või [email protected].

Tühistamistingimused

Kui te ei saa mingil põhjusel koolitusel osaleda, palun andke sellest teada e-posti aadressil [email protected]. Kui teatate mitteosalemisest vähemalt 10 tööpäeva ette, lepime Teiega kokku uue aja või tagastame 100% koolituse maksumusest. Tagastame koolituse osalustasu täismahus juhul, kui pole tehtud koolituse korraldamisega seotud kulutusi (ostetud õppematerjale jms). 

Kui teatate mitteosalemisest 5-9 tööpäeva enne koolitust, kuulub tasumisele 50% arvest.

Hilisemal teavitamisel, koolitusele mitteilmumisel, sellest mitteteatamisel või koolituse poolelijätmisel õppetasu ei tagastata.